

COMBINED SCIENCE STUDY PACK CHEMISTRY REVISION

AQA GCSE Combined Science: Trilogy 8464

Paper	Exam Date
<u>Chemistry Paper 1</u>	
5.1 Atomic Structure and the Periodic Table	
5.2 Bonding, Structure and the Properties of Matter	
5.3 Quantitative Chemistry	
5.4 Chemical Changes	
5.5 Energy Changes	
<u>Chemistry Paper 2</u>	
5.6 The Rate and Extent of Chemical Change	
5.7 Organic Chemistry	
5.8 Chemical Analysis	
5.9 Chemistry of the Atmosphere	
5.10 Using Resources	

Name_____

Contents Page

Page Number	Contents		
2	How to use your study pack		
3	GCSE Command Words		
	Particles and Bonding		
	Atomic Structure		
4	Structure and Bonding		
	Organic Chemistry		
	Chemical Analysis		
	<u>Quantitative Chemistry</u>		
30	Chemical Measurements		
	Amount of substance		
	<u>Trends and Patterns</u>		
	The Periodic Table		
37	Chemical Changes		
	Electrolysis		
	Chemistry of the Atmosphere		
	Using Resources		
	<u>Physical Chemistry</u>		
63	Energy Changes		
	Rate of Reaction		
77	Reflections Page		

How To Use Your Study Pack

GCSE Command Words

Command Word	Definition	Example Question	Example Answer
State, give, name, write down	Short answer only and does not require an explanation.	State the units for acceleration.	m/s²
Describe (not graphs or practical)	Recall facts, events or process in an accurate way.	Describe how quadrats should be used to estimate the number of plants in a field.	Place a large number of quadrats randomly in the field. Count the number of plants in the quadrat. Calculate the mean number in each quadrat then use the area of the quadrat and field to estimate the number of plants.
Describe (graphs)	Identify the pattern in the graph and use numbers from the graph to make this clear.	Describe the pattern of tooth decay in Figure 3 for water without fluoride.	The percentage of tooth decay increases with age by 4% for each age group in figure 3.
Describe (practical)/ Plan	Write the method for the practical or the results that you would expect to see.	Plan an experiment to test the hypothesis "the higher the temperature, the faster the rate of reaction".	Measure the rate of reaction by adding a set amount of metal to set type, volume and concentration of acid and time how long it takes to stop fizzing. Repeat the experiment at 5 different temperatures.
Determine	Use given data or information to obtain and answer.	Determine the half-life of a sample if it decreases from 1000g to 250g in 2.6million years.	1.3 million years
Explain	Make something clear or state the reasons for something happening. You will need to state what is happening and then say why it happens.	Explain why soot forms.	Soot forms during incomplete combustion when not enough oxygen is present.
Evaluate	Use the information supplied and your own knowledge to consider the evidence for and against a point. You may also be required to include a justified conclusion.	A company stated: 'A Life Cycle Assessment shows that using plastic bags has less environmental impact than using paper bags'. Evaluate this statement.	Paper bags are made from a renewable resource whereas plastic bags are made from finite resources. However paper bags are bad because they produce much more solid waste and more CO ₂ is released when they are produced therefore the negative impacts of paper bags outweigh the problem of plastic coming from a finite resource.
Compare	Describe the similarities and/or differences between things. Avoid writing about just one.	Compare the differences between cracking and distillation.	Cracking involves a catalyst whereas distillation does not.
Sketch	Draw approximately.	Sketch a current– potential difference graph for a filament lamp.	

Particles and Bonding Keywords

Add all the important keywords for this big idea in the grid below as you come across them in the study pack.

Word	Definition

Particles and Bonding								
Book Ref.	Spec. Ref.		Ato	ms, Elements and Com	oounds			
	CS 5.1.1.1	1. Whati	1. What is the smallest part of an element that can exist?					
	Triple 4.1.1.1	2. Define the term compound and give an example.						
		3. Comp	lete the table be	low:				
		Name	Formulae	Element or compound?	Number of atoms?	Number of elements?		
		Oxygen						
			CaCl ₂					
		Sodium						
		sulfate						
		Γ						
		-		Prove It!				
		When sulfuric ad products.	cid is added to sodium	hydroxide a reaction occurs to	o produce two			
		The equation is:						
		H_2SO_4 + 2NaOH \rightarrow Na ₂ SO ₄ + 2H ₂ O						
		How many elem	ents are in the formula	a H₂SO₄?				
		Tick one box.						
		3						
		4						
		6						
		7						
						(1)		
				Maths Skills				
		Balance the fo	ollowing equatior	ns:				
		H_2	+ O ₂	\rightarrow H ₂ O				
		CH_4	+ O ₂	\rightarrow CO ₂ +	H_2O			
		Na	+ Cl ₂	→ NaCl				
		Fe	+ O ₂	\rightarrow Fe ₂ O ₃				
		Al	+ Br ₂	\rightarrow AlBr ₃				
		CaO	+ H ₂ O	\rightarrow Ca(OH) ₂				

	Particles and Bonding						
Book Ref.	Spec. Ref.		Mix	tures			
	CS 5.1.1.2	1. Define the	1. Define the term mixture and give an example.				
	Triple 4.1.1.2	2. When mixtu	2. When mixtures are separated is this a physical or chemical process?				
	WS2.7	3. Complete t	the table below:				
	MS2c	Substances to be Name of separating Description of how the technique works.					
		Sand and water					
		Salt and water					
		Water and ethanol					
		Mixture of food					
	 colourings 4. What is wrong with the setup of the equipment below to separate the solid yeast from the solution? The tude's write is operation used Figure 3 shows the apparation used Figure 3 Contract that yeast from the solution. Contract that yeast from the s						
			Pro	ve It!			
		Analyse the	The ligure below shows a paper chromato	gram of five different inte. Softwert front Green ink Black inte Start line and explain the result for black ink. (4)			
				. /			

	Particles and Bonding					
Book Ref.	Spec. Ref.	The Development of the Model of the Atom				
	CS 5.1.1.3	 Which model describes the atom as s a ball of positive charge with negative electrons embedded in it? 				
	Triple 4.1.1.3	Name the experiment which led scientists to believe the mass of an atom was mostly in the centre.				
	WS1.1 WS1.2	3. What evidence led them to believe there was a positive nucleus?				
		4. What was the name of the model resulting from the experiment above?				
		5. How did Niels Bohr improve the nuclear model?				
		6. Which scientist provided evidence to show the nucleus contained neutrons as well as protons?				
		Prove It!				
		In 1911 the scientists Geiger and Marsden investigated the effect of firing alpha particles at very thin sheets of gold foil.				
		Their experiment is shown in Figure 2. The arrows show the paths taken by alpha particles in the experiment.				
		Figure 2				
		Alpha source Thin gold sheet				
		(a) Explain why scientists replaced the plum pudding model of the atom with the nuclear model of the atom as a result of the experiment.				
		(4)				

	Particles and Bonding						
Book Ref.	Spec. Ref.		Atoms				
	CS	1. Complete the table to show the names of the 3 sub-atomic particles and their					
	5.1.1.4	Sub-Atomic Particle	Relative Mass	Relative Charge			
	- · ·		1				
	Iriple 4.1.1.4	electron		+1			
	4.1.1.5						
		 In terms of sub-atomic p a) atomic number 	particles, define the followin	g terms:			
		b) mass number					
		3. Where is the majority of	mass found in an atom?				
	 4. What is the approximate radius of: a) an atom? b) the nucleus of an atom? Give your answer in standard form. 						
		5. Define the term isotope	and give an example.				
			Prove It!				
		Explain the difference between the two isotopes of carbon below in terms of their sub					
		atomic particles.					
		"C "C					
		6 6					
	MS 1b		Maths Skills				
		Convert the following numbers	into standard form and vice	e versa:			
			mber Stan	dard Form			
		300000	00				
		72400	-				
		3/1.4	>				
		1200					
		400					
			2.10	58 × 107			
			7	× 10 ²			
			8.	1 × 10 ³			
			3	× 10 ⁵			
			5.47	18 × 10 ²			

Particles and Bonding									
Book Ref.	Spec. Ref.		RAM ai	nd Electronic Strue	cture				
	CS 5.1.1.6	1. Define the term relative atomic mass.							
	5.1.1.7 Triple	2. Explain why t	ne relative atom	ic mass of chlorin	e is not a whole number.				
	4.1.1.7 4.1.1.7 WS1.2	3. Name the ele	3. Name the element that has its electron configuration shown below.						
		4. On the diagra Which shell is	am above, labe filled first?	l the lowest and h	nighest energy levels (shells).				
				Maths Skills					
		Balance the following	g equations:						
		Element	Isotopes	Percentage Abudance	Relative atomic mass				
		Lithium	⁶ ₃ Li	7.6%					
			⁷ Li	92.4%					
		Magnesium	²⁴ Mg	79%					
			²⁵ Mg	10%					
			¹² ²⁶ Mg	11%					
			12						
		Copper	⁶³ Cu	70%					
			⁶⁵ Cu	30%					
			29						

18	19	21	53
A	V	Sal	T
AI	n	SC	2 A A
Er-pois	Fot-salation	Somediam.	Contine

	Particles and Bonding					
Book Ref.	Spec. Ref.		Chemical Bonds of	and Ionic Bonding		
	CS	1. Tick the correc	t box to show which b	ond occurs between	which types of atom	
	5.2.1.1	Type of bond	Non-metal + Non-	Metal + Metal	Metal + Non-metal	
	0.2.1.2	lonic	metal			
	Triple	Covalent				
	4.2.1.1	Metallic				
	4.2.1.2	2 How is a positiv	l velv charged ion forme	ed? Give an example	of a positive ion State	
		 How is a positively charged ion formed? Give an example of a positive ion. State the electron configuration. How is a negatively charged ion formed? Give an example of a negative ion. State the electron configuration. What do you notice about the electron configurations of the ions? HINT: Are they similar to another group in the Periodic table? Describe what happens to electrons when an ionic bond is formed? Draw a dot and cross diagram for a sodium atom and a fluorine atom. Draw a dot and cross diagram to show sodium fluoride. Include charges on the ions. 				
		[Prov	ve It!		
		The diagram shows an	atom of magnesium and	an atom of chlorine		
		Describe, in terms of el ions to produce magnes	ectrons, how magnesium sium chloride (MgCl ₂).	The second secon	ms change into (4)	

	Particles and Bonding							
Book Ref.	Spec. Ref.			lons				
	CS 5.2.1.1 5.2.1.2	1. Do metals form positive or negative ions? Why?						
	Triple 4.2.1.1 4.2.1.2	2. Do non-metals form positive or negative ions? Why?						
		3. Complet	e the table to :	show the ion formed from e	ach atom?			
			Atom	Number of electrons in outer shell	lon			
			Lithium	1	Li+			
					Cŀ			
		,	Aluminium					
			Hydrogen					
			Bromine					
			Calcium					
			Oxygen					
			Barium					
					NO3 ⁻			
			Sulfate					
		F	Phosphate					
		F	Phosphide					
				11				

	Particles and Bonding			
Book Ref.	Spec. Ref.	Ionic Compounds		
	CS 5.2.1.3	1. What structure do ionic compounds from?		
	Triple 4.2.1.3	2. Name the force that holds oppositely charged ions together?		
		 Using the diagram below, state the empirical formula for lithium chloride. Image: Draw a diagram to represent the 3D structure of sodium chloride. 		
		Maths Skills		
		Work out the formulae for the following compounds: a) lithium chloride		
		b) sodium bromide		
		c) magnesium fluoride		
		d) potassium oxide		
		e) calcium chloride		
		f) beryllium sulphide		
		g) aluminium chloride		
		h) aluminium oxide		

	Particles and Bonding			
Book Ref.	Spec. Ref.	Covalent Bonding		
	CS 5.2.1.4	1. Give an example of a molecule that is covalently bonded.		
	Triple 4.2.1.4	2. How is a covalent bond formed between 2 hydrogen atoms? Draw a dot and cross diagram to help explain your answer.		
		3. Draw a dot and cross diagram to show the bonding in methane (CH4).		
		4. Draw a dot and cross diagram to show the bonding in oxygen (O_2).		
		5. Suggest 3 limitations of the dot and cross model.		
		 6. Use the diagram to work out a) the molecular formula of ammonia. b) the number of atoms in ammonia. c) the number of elements in ammonia. XX H^X₀ N ^X₀H 		
		H d) What is a polymer? Draw a diagram showing poly(ethene).		

	Particles and Bonding				
Book Ref.	Spec. Ref.	Metallic Bonding			
	CS 5.2.1.5 1. Name the bonding shown in the diagram below. Triple 4.2.1.5 Image: Comparison of the structure of the				
		Prove Itl			
		Glass can be coloured using tiny particles of gold. Gold is a metal. Describe the structure of a metal.			
		(3)			

	Particles and Bonding				
Book	Spec.			States of Matter	
Ket.	CS	1. What are the 3 states of matter? Draw particle diagrams for each state in the table below.			agrams for each state in the
	5.2.2.1	5.2.2.2			
	Triple		Solid		
	4.2.2.1				
	4.2.2.2				
		2. What	do the following state	e symbols mean; (g), (l), (s), (aq)?
	 3. Name the process when a a) gas becomes a liquid. b) solid becomes a liquid. c) liquid becomes a solid. d) liquid becomes a gas 				
		4. What	affects the amount o	f energy needed for c	substance to change state?
		5. HT only: give three limitations of the particle model?			
		The structures of four substances, A, B, C and D, are represented in Figure 1.			
		Figure 1			
	A B C D				D
		Use the correct letter A,B,C or D to answer each question i) Which substance is a gas? ii) Which substance is a liquid? iii) Which substance is an element? iv) Which substance is made of ions?			n
		What state is a	Maths Skills What state is each of the following substance at room temperature (20°C).		
		Substance	Melting Point (°C)	Boiling Point (°C)	State of matter at room
		Helium	_070	_248	temperature
		Sulfur	112	444	
		Bromine	-7	59	

	Particles and Bonding			
Book Ref.	Spec. Ref.	Properties of Ionic Compounds		
	CS 5.2.2.3	1. What causes a substance to have a high melting point or boiling point?		
	Triple 4.2.2.3	2. What enables a substance to conduct electricity?		
		3. Do giant ionic substances have high or low melting points? Explain why.		
		4. Do giant ionic substances conduct electricity? Explain your answer.		
		Duction IAI		
		Prove It!		
		Potassium ion (K*) – Iodide ion (I ⁻)		
		Explain why a high temperature is needed to melt potassium iodide.		
		(2)		
		Solid sodium iodide does not conduct electricity.		
		Why does sodium iodide solution conduct electricity?		
		(1)		

	Particles and Bonding			
Book Ref.	Spec. Ref.	Properties of Small Molecules		
	CS 5.2.2.4	1. Give an example of a simple molecular substance.		
	4.2.2.4	2. Do giant molecular substances have high or low melting points? Explain why.		
		3. Why does C_2H_6 have a lower melting point than C_5H_{12} ?		
		4. Do simple molecular substances conduct electricity? Explain your answer.		
		Prove It!		
		why is hydrogen chloride a gas at room temperature (20-0)?		
		Tick (✓) two boxes.		
		Hydrogen chloride has a low boiling point.		
		Hydrogen chloride has a high melting point.		
		Hydrogen chloride is made of simple molecules.		
		Hydrogen chloride does not conduct electricity.		
		Hydrogen chloride has a giant structure.		

	Particles and Bonding				
Book Ref.	Spec. Ref.	Polymers			
	CS 1. Give one example of a polymer. 5.2.2.5 2. What are polymer chains made of? Triple 7.000000000000000000000000000000000000				
	4.2.2.5	.53. What sort of bonding is present in polymers?4. Why do polymers have high melting points?			
	5. Draw the repeating unit for this monomer. $ \begin{array}{c} H \\ H \\ H \end{array} $				
		6. Draw the following polymer as a monomer. $ \begin{pmatrix} F \\ I \\ C \\ F \\ F$			
		Prove It!			
		 Poly(ethene) is often used for packaging. Poly(ethene) is made from ethene. 			
		Ethene is an alkene with the chemical formula $\mathrm{C_2H_4}$			
		Draw the displayed structure for ethene.			
		Poly(ethene) is formed from ethene in a polymerisation reaction.			
		Describe, in terms of molecules, what happens in a polymerisation reaction.			
			(3)		

	Particles and Bonding				
Book Ref.	Spec. Ref.	Properties of Metals			
	CS 5.2.2.7 5.2.2.8	1. Why do metals have high melting and boiling points?			
	Triple 4.2.2.7 4.2.2.8	2. Draw a diagram to show the structure of a pure metal and another diagram to show the structure of an alloy. Label the diagram.			
		3. Using your diagrams above, explain why alloys are harder than pure metals.			
		4. Why are metals good conductors of heat?			
		5. Do metals conduct electricity? Explain your answer.			
		Provo Iti			
		Explain why titanium conducts electricity.			

	Particles and Bonding				
Book Ref.	Spec. Ref.	Graphene and Fullerenes			
	CS 5.2.3.3	 What is graphene? What is it used for? 			
	Triple 4.2.3.3	2. Name 3 properties of graphene.			
	WS1.4	3. What is a fullerene?			
		4. Which element makes up fullerenes? What shape rings do they form? How many atoms are in each ring?			
		5. What was the name of the first fullerene to be discovered?			
		6. What is a nanotube?			
		7. Describe the structure of a nanotube.			
		8. What properties do nanotubes have?			
		9. Why are nanotubes useful?			
		Prove Iti			
		Carbon nanotubes are cylindrical fullerenes.			
		Explain the properties of carbon nanotubes.			
		Answer in terms of structure and bonding.			
		(Total 6 marks)			

	Particles and Bonding					
Book Ref.	Spec. Ref.	Crude Oil and Alkanes				
	CS 5.7.1.1	1. What is crude oil made up of?				
	Triple 4.7.1.1	2. Define the term hydrocarbon?				
	WS1.2 MS5b	3. How was crude oil formed?				
		4. What is the general formula for an alkane?				
		5 Complete the table below:				
		Name Molecular Formula Structural Formula	nula			
		Methane				
		Propane				
		C4H10				
		Drove M				
		Prove III				
		vvnat is the formula of propane?				
		Butane has the formula C ₄ H ₁₀				
		Complete the displayed (structural) formula for one molecule of butane.				
		H				
		н	(1)			

	Particles and Bonding				
Book Ref.	Spec. Ref.	Fractional Distillation			
	CS 5.7.1.2	 Which process separates crude oil into groups of compounds with a similar number of carbon atoms? 			
	Triple 4.7.1.2	2. Name 3 fuels that are produced from crude oil by this process.			
		3. Outline the steps in the process above. Use the diagram to help you.			
		Prove It!			
		Describe and explain how petrol is separated from the mixture of hydrocarbons in crude oil.			
			(6)		

	Particles and Bonding				
Book Ref.	Spec. Ref.		Properties of Hydrocarbons		
	CS 5.7.1.3	1. Comple	ete the following table to define the Definition	e key properties of hydrocarbons What happens to the property as the carbon chain increases	
	Triple	Viscosity			
		Boiling Point			
		Flammability			
		2. Write a	word equation to show the comple	ete combustion of methane.	
		3. Write a undeco	balanced symbol equation to show ane (C11H24).	v the complete combustion of	
	Prove It!				
		the formula C	C ₃₀ H ₆₂		
		80 60 40 20 0 1	2 3 4 5	Maths Skills 1. Describe the pattern between the number of carbon atoms in a molecule and its boiling point.	
		Boiling -40 point in °C -60 -80 -100 -120 -140 -160 -180	Number of carbon atoms in molecules	2. Predict the boiling point of a molecule with 7 carbon atoms in it.	

	Particles and Bonding				
Book Ref.	Spec. Ref.	Cracking and Alkenes			
	CS 5.7.1.4	 Which process breaks down large hydrocarbons into smaller, more useful molecules? 			
	Triple 4.7.1.4	2. What are the 2 products of cracking?			
		3. Describe the tests you could carry out to identify each product in Q2?			
		 Complete the table to summarise the conditions needed for each type of cracking. 			
		Method Conditions Required			
		Thermal			
		Catalytic			
		5. Describe how both products of cracking can be useful.			
		Prove It!			
		Paraffin contains decane. The cracking of decane can be represented by the equation below. A decane molecule is split into two smaller molecules.			
		Complete the equation by adding the formula of the other product.			
		$C_{10}H_{22}(I) \rightarrow \dots (I) + C_2H_4(g)$ decane			
			(1)		
		Explain, as fully as you can, why cracking is used in the oil industry.	(3)		
		Describe how fuel oil is broken down into smaller, more useful molecules such as gasoline (petrol).	(2)		

	1	Pa	rticles and Bonding	
Book Ref.	Spec. Ref.		Pure Substances and Formu	lations
	CS 5.8.1.1 5.8.1.2	1. What is a pure s	ubstance? Give an example	e.
	Triple 4.8.1.1 4.8.1.2	2. How could you	tell if a substance is pure or	a mixture?
		3. What is a formu	lation? Give 2 examples.	
			Prove It!	
		Aqamed is a medicine for childr	en.	
		(a) The medicine is a formula	ition.	
		What is meant by a formu	lation?	
				(1)
		(b) Children often do not like	taking medicine.	
		Suggest a substance that take it.	could be added to Aqamed to inc	crease the desire for children to
		Give a reason for your su	ggestion.	
		Substance		
		Reason		
				(2)
			Maths Skills	
		2 samples of copper cr 2 samples is purer.	lloride are made. Look at th	le data and explain which of the
			Melting Point (°C)	Boiling Point (°C)
		Sample A	494	995
		Pure copper chloride	4/5	993

Particles and Bonding				
Book	Spec.	CS: RPA12		
Ref.	Ref.	Triple: RPA6		
	CS	Required Practical		
	5.8.1.3	Investigate how paper chromatography can be used to separate and tell the		
	Triplo	difference between coloured substances.		
	1813	Method		
	4.0.1.5	You have been given 4 samples of food colouring of known colour and 1		
	AT1	sample of unknown colour. You also have a solvent, a piece of filter paper and		
	AT4	capillary tubes. Outline a method that would allow you to get the results below.		
	WS2.2			
	WS2.3			
	WS2.6			
		Results		
		A sample set of results are shown below:		
		Colored and		
		Solvent front		
		• •		
		Blue Ink Red Ink Yellow Ink Green Ink Unknown Start line		
		1) Identify the colours present in the unknown ink		
		2) Explain which colour is the most soluble.		
		3) Calculate the Rf value for the red ink.		
		() Identify the mehile phase and the stationary phase		
		4) identity the mobile phase and the stationary phase.		

	Particles and Bonding					
Book Ref.	Spec. Ref.	Identification of Common Gases				
	CS	Complete the	e table to sum	nmarise the test for the	e following gases and the positiv	ve result.
	5.8.2.1	r		1		,
	5.8.2.2	Name of	Formula of	Description of Test	Positive Result	
	5.8.2.3	Gas	Gas			
	5.8.2.4	Hydrogen				
	Triplo					
	1821					
	4.8.2.2					
	4.8.2.3	Oxvaen				
	4.8.2.4	,9				
		Carbon				
		Dioxide				
		Chlorine				
						J

Quantitative Chemistry Keywords

Add all the important keywords for this big idea in the grid below as you come across them in the study pack.

Word	Definition

		Quantitative Chemistry
Book Ref.	Spec. Ref.	Conservation of Mass and RFM
	CS 5.3.1.1 5.3.1.2	 In a reaction, why does the mass of reactants always equal the mass of products?
	Triple 4.3.1.1 4.3.1.2	 2. In the equation: 2Li + F₂ → 2LiF a) What does the 2 in front of LiF mean? b) What does the 2 mean in F₂?
		3. Explain why the following equation needs to be balanced: $2H_2 + O_2 \rightarrow 2H_2O$
		Prove It!
		The chemical equation for the reaction of titanium(IV) chloride with sodium is:
		TiCl₄ + 4Na → Ti + 4NaCl
		titanium(IV) chloride + sodium → titanium + sodium chloride
		For one reaction:
1		 1615 kg titanium(IV) chloride reacted completely with 782 kg sodium 1989 kg sodium chloride was produced. Calculate the mass of titanium produced from this reaction.
		Mass of titanium = kg (1) The figure below represents a molecule of paracetamol.
		$H = \begin{bmatrix} H & 0 \\ H & - \begin{bmatrix} - & - & - \\ - & - & - \\ H & - $
		Give the molecular formula of paracetamol.
		Calculate its relative formula mass (<i>M</i> _r).
		Mathe Skille
		Calculate the relative formula mass of the following compounds: a) H ₂ b) H ₂ O c) CaCl ₂ d) CO ₂ e) CaCO ₃ f) Ca(OH) ₂

	Quantitative Chemistry				
Book Ref.	Spec. Ref.	Mass Change and Chemical Measurements			
	CS 5.3.1.3 5.3.1.4 Triple 3.3.1.3 3.3.1.4	 In a reaction, the mass of the products must always equal the mass of the reactant. However if a gas is involved in can often look like the mass has gone up or down. a) Give an example of a reaction where it appears the mass of the product is greater than the reactant. 			
	WS3.4 WS3.7	b) Give an example of a reaction where it appears the mass of the reactant is greater than the product.			
		2. Give 2 reasons why a set of results will contain uncertainty.			
		3. If you have higher uncertainty in your results, does that mean they are more or less precise? Why?			
		Prove It!			
		A student heated 5g of calcium in an unsealed test tube so that it reacted with oxygen. At the end of the reaction, the mass of the product inside the test tube was 7g. Explain this observation. The student repeated the experiment twice more and found the mass of the product was 7.1g and 6.8g for these experiments. Calculate the uncertainty and suggest what might have caused it.			
		Maths Skills			
		Calculate the uncertainty for the following sets of data:			
		Repeat 1 Repeat 2 Repeat 3 Mean Uncertainty			
		2.30 2.35 2.38 2.34			
		49.1 58.1 48.7 52.0			

-	T	Quantitative Chemistry
Book Ref.	Spec. Ref.	Moles
	CS 5.3.2.1 (HT	1. What is the mass of 1 mole of a substance in grams equal to?
	only)	2. What is the equation that links number of moles, mass and relative formula mass?
	4.3.2.1 (HT only)	
		3. What is the name of the constant that tells us the number of atoms, particles, molecules or ions in a mole of any given substance? What is the value of this constant?
		4. How would you calculate the number of molecules present in a substance if you were given the mass of the substance?
		Durana Iki
		Calculate the number of molecules in 14 g of carbon dioxide.
		Give your answer in standard form.
		Relative atomic masses (A,): C = 14: O = 16
		Answer = molecules
	MS3b	Maths Skills
	MS3c	 Complete the following mole calculations using the equation you wrote above: a) How many moles are there in 42g of carbon? b) How many moles are there in 66g of carbon dioxide? c) What is the mass in g of 0.80 moles of sulfuric acid (H₂SO₄)? d) What is the mass in g of 1.6 moles of ammonia (NH₃)? e) Prove that the relative formula mass of NaCl is 58.5 if you know that you have 23.4g in 0.4 moles.

	Quantitative Chemistry
Spec. Ref.	Amount of Substance
CS 5.3.2.2 (HT only)	 In the following equation, how many moles of magnesium are reacting with how many moles of hydrochloric acid? Mg + 2HCl → MgCl₂ + H₂
Triple	
4.3.2.2 (HT	Prove It!
only)	Iron(III) chloride can be produced by the reaction shown in the equation:
	$2 \text{ Fe} + 3 \text{ Cl}_2 \rightarrow 2 \text{ FeCl}_3$
	 Calculate the maximum mass of iron(III) chloride (FeCl₃) that can be produced from 11.20 g of iron.
	Relative atomic masses (A_r): CI = 35.5; Fe = 56.
	(3)
MS3b MS3c	 Maths Skills 1) How many moles of water are formed if 2 moles of methane combust completely in oxygen? CH₄ + 2O₂ → CO₂ + 2H₂O
	2) What mass of calcium chloride is produced when 3.7g of calcium hydroxide reacts with an excess of hydrochloric acid? Ca(OH) ₂ + 2 HCI → CaCl ₂ + 2 H ₂ O
	 What is the mass of aluminium oxide produced when 135g of aluminium is burned in air? 4AI + 3O₂ → 2Al₂O₃
	 How much zinc carbonate would need to decompose to form 24.2g of zinc oxide? ZnCO₃ → ZnO + CO₂
	Spec. Ref. CS 5.3.2.2 (HT only) Triple 4.3.2.2 (HT only)

	Quantitative Chemistry				
Book Ref.	Spec. Ref.	Maths Skills (Balancing Faugtions Using Moles)			
	CS 5.3.2.3 (HT	 8.1g of zinc oxide reacts completely with 0.60g of carbon to form 2.2g of carbon dioxide and 6.5g of zinc. Balance the symbol equation below. 			
	only)	ZnO + C → CO ₂ + Zn			
	Triple 4.3.2.3 (HT only)				
		 Potassium nitrate (KNO₃) decomposes on heating to give potassium nitrite (KNO₂) and oxygen (O₂). When 4.04 g of KNO₃ is heated, 3.40 g of KNO₂ is produced. Write a balanced equation for this reaction. 			
		 2.7g of an element, X, reacts completely with 2.4g of oxygen to form 5.1g of an oxide, X oxide. Write a balanced equation for this reaction. 			
		 Iron(III) oxide (Fe₂O₃) is reduced by carbon on heating to give iron metal (Fe) and carbon dioxide (CO₂). When 480 g of Fe₂O₃ is heated with carbon, 336 g of Fe and 198 g of CO₂ are produced. Write a balanced equation for this reaction. 			

	Quantitative Chemistry						
Book Ref.	Spec. Ref.	Limiting Reactants and Concentration of Solutions					
	CS 5.3.2.4 (HT only)	 Why do chemical reactions sometimes stop? For example, when you add magnesium to acid it eventually stops fizzing. 					
	Triple 4.3.2.4 (HT	2. What is a limiting reactant? Why is it called this?					
	oniy)	3. In the example in question 1, which reactant is usually in excess, acid or metal, and which is the limiting reactant?					
		 Does the limiting reactant or the reactant in excess determine how much product can be formed? Explain your answer. 					
		5. When 2.24g of iron were reacted with an excess of copper sulfate solution, 2.54g of copper were produced. How much copper would be produced if 6.72g of iron were reacted in an excess of copper sulfate solution?					
		6. What is the equation that links concentration, mass of solute and volume of solution?					
		7. If the mass is measured in grams and the volume in dm ³ , what are the units of concentration?					
		8. If you increase the mass of solute in a solution, what happens to the concentration?					
	CS	Maths Skills (Concentration)					
	Triplo	1 What is 2300 cm ³ in dm ³ 2					
	4.3.2.5						
	MS3b	2. What is the concentration of a solution of sodium chloride solution that is made by dissolving 30g of sodium chloride in 0.20dm ³ of water?					
	MS3c	3. What is the concentration in g/dm ³ of a solution of iron chloride solution that is					
	W\$4.5	made by dissolving 10g of iron chloride in 25cm ³ of water?					
		4. What is the mass of copper chloride in 20cm ³ of an 80g/dm ³ solution of copper chloride?					

Trends and Patterns Keywords

Add all the important keywords for this big idea in the grid below as you come across them in the study pack.

Word	Definition

	Trends and Patterns									
Book Ref.	Spec. Ref.				T	he Period	ic Table			
	CS 5.1.2.1 5.1.2.2	4.	4. In what order are elements in the periodic table organised? e.g. Why does carbon come before nitrogen?						Vhy does	
	Triple 4.1.2.1 4.1.2.2	5.	5. What is similar about the electronic structure of the elements of group 1 (Li, Na, K etc.)?							
		 Name 2 elements in the periodic table that react in a similar way and explain the reason for this. 								and explain
		7.	How were	the elem	ents in the	e periodic	c table firs	st organise	ed?	
		8. Which scientist improved the periodic table by leaving gaps for elements he hadn't thought had been discovered?					ements he			
	WS1.1 WS1.2	 Evaluate whether hydrogen has been put in the correct place on an early version of the periodic table below. Justify your answer. The table shows part of an early version of the periodic table. 						an early		
			Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	Group 7	
			Н							
			Li	Be	В	С	N	0	F	_
			Na	Mg	AI	Si	Р	S	CI	
		E	46		6-120	Prove	e IT!	- de alte de la		
		Explain the arrangement of the first 20 elements in today's periodic table. You should answer in terms of atomic structure.								
										(2)
l										

	L	Trends and Patterns					
Book Ref.	Spec. Ref.	Metals, Non-metals and Group 0					
	CS 5.1.2.3 5.1.2.4	 Where are metals found on the periodic table? What sort of ions do they form? Give an example. 					
	Triple 4.1.2.3 4.1.2.4	2. Where are non-metals found on the periodic table? What sort of ions do they form? Give an example.					
		3. What is another name for the group 0 elements?					
		4. How is the electron configuration of group 0 elements similar?					
		5. How does the electron configuration of group 0 elements affect their reactivity?					
		6. Does neon or krypton have a higher boiling point? What is the trend as you go down the group?					
		Prove Itl					
		Explain why Group 0 elements are monatomic.					
		(2)					

	Trends and Patterns							
Book Ref.	Spec. Ref.			Group 1				
	CS 5.1.2.5 5.1.2.6	1. State the other name for the group 1 elements.						
	Triple 4.1.2.5 4.1.2.6	2. How n	How many electrons do group 1 elements have on their outer shell?					
		3. Descri desce	3. Describe and explain the trend in the reactivity of group 1 metals as you descend group 1?					
		 Which group 1 element is the least reactive? Why? Complete the table to describe the reactions of the first 3 group 1 elements with oxygen, chlorine and water. 						
		Group 1	Reaction with	Reaction with chlorine	Reaction with water			
		Lithium	oxygen					
		Sodium						
		Potassium						
		_		Prove It!				
		Potassium is also in Group 1 of the periodic table. Potassium reacts with water in a similar way to lithium. Write down two differences you would see between the reactions of potassium and lithium with water. 1						
		2						

	Trends and Patterns						
Book Ref <u>.</u>	Spec. Ref.			Group	o 7		
	CS	1. What is	another name f	or the group 7	elements?		
	5.1.2.6	2. How many electrons do group 7 elements have on their outer shell?					
	Triple 4.1.2.5	3. Write the formula for a molecule of chlorine.					
	4.1.2.6	4. Which group 7 elementa) has the highest melting point?b) has the lowest boiling point?					
		5. Why is fluorine the most reactive halogen?					
		6. Would a displacement reaction take place if chlorine gas was reacted with potassium bromide? Explain your answer.					
		Г					
		A student put some po	assium bromide solution	Prove n in a test tube.	It!		
		She added a few drops	of chlorine solution and	d observed the result.			
		She repeated the proc	ess using different potas	sium halide salts and d	ifferent halogens.		
		The table below shows	the student's results.				
Solution of halogen Potassium chloride solution Potassium bromide solution Potassium iodide solution							
		Chlorine		Orange colour forms	Brown colour forms		
Bromine No reaction Brown colour forms							
	lodine No reaction No reaction						
		Give the order of reactivity of the halogens from the results in the table above.					
		Explain how you used Order	he results to show this (order of reactivity.			
		Explanation					
		(2) Explain the order of reactivity of Group 7 elements.					
		Include information about atomic structure.					
						(2)	

	Trends and Patterns						
Book Ref.	Spec. Ref.	Reactivity of m	netals				
	CS 5.4.1.1 5.4.1.2	 What is the general equation for the reaction of: metal + oxygen → 					
	Triple 4.4.1.1 4.4.1.2	 Complete the equations: a) zinc + oxygen → b) copper +					
		 For the equation in 2a, identify the species the Explain why the reaction between zinc and hy 	at gets oxidised. ydrochloric acid is a redox reaction				
		6. Put the following metals into order of reactivit iron, aluminium, potassium and sodium. Inclue and hydrogen.	Put the following metals into order of reactivity: magnesium, calcium, copper, zinc, iron, aluminium, potassium and sodium. Include the position of non-metals carbon and hydrogen.				
		7. Why is potassium more reactive than sodium?					
		 8. Complete the equations: a) zinc + iron sulfate → b) zinc + copper sulfate → c) magnesium + iron (II) chloride → 9. Explain why the above equations are called 	omplete the equations:) zinc + iron sulfate →) zinc + copper sulfate →) magnesium + iron (II) chloride → xplain why the above equations are called 'displacement reactions'				
		10. Summarise the reactions of metals of acid and water					
		MetalReaction with waterpotassiumlithiummagnesiumzincIroncopperGold	Reaction with dilute acid				

Pogotivity of motols				
1. Define the term metal ore				
2. Platinum is found in its native state. What does this tell you about its reactivity?				
3a. What does it mean to reduce zinc oxide?				
3b. Zinc oxide, ZnO, can be reduced to zinc by heating it in a furnace with carbon. Write a balanced symbol equation for this reaction, labelling what is reduced and what is oxidised				
4. Explain why carbon can reduce zinc oxide but magnesium cannot.				
5. a. (HT only) Write an ionic equation, including state symbols for the reaction between zinc and iron (II) sulfate				
b. Explain in terms of the transfer of electrons which species is oxidised and which is reduced in this reaction (Hint: OILRIG).				
Prove It! udent was trying to extract the metals from lead oxide and aluminium oxide. She ited each oxide with carbon in a fume cupboard as shown below. She was able to act lead from lead oxide but not aluminium from aluminium oxide. Explain the its of these experiments [3]				
lumps of charcoal (carbon) mixture of powdered carbon and the metal oxide				
very strong heat				

	Trends and Patterns						
Book Ref.	Spec. Ref.	Reactions of acids with metals					
	CS 5.4.2.1	 Write the general equation for the reaction: acid + metal → 					
	Triple 4.4.2.1	 Write a balanced symbol equation, including state symbols, for: a) iron + sulfuric acid 					
		b) zinc + hydrochloric acid					
		3. Why can't copper sulfate be prepared by adding copper metal to dilute sulfuric acids?					
		4. Why can't potassium chloride be prepared by adding potassium to dilute hydrochloric acid?					
		5. What gas is produced when a meal and acid are reacted together? What would you see?					
		 6. (HT only) Using the reaction of zinc and dilute hydrochloric acid: a) Write an ionic equation for the reaction with state symbols 					
		 b) From your answer to part a, construct two half equations showing the electron transfers taking place. 					
		c) Explain why this is a redox reaction in terms of electron transfer.					

	Trends and Patterns						
Book Ref.	Spec. Ref.	Neutralisation of acids and salt production					
	CS 5.4.2.2	1. What is a neutralisation reaction? Give an example.					
	Triple 4.4.2.2	 Complete the general word equations for neutralisation: acid + base → acid + alkali → acid + metal carbonate → 					
		 Define and give an example of: a. Acid 					
		b. Alkali					
		c. Base					
		4. Name the salts formed when a lithium is reacted with the following acids:					
		Acid Lithium salt formed					
		Hydrochloric acid					
		Nitric acid					
		 Write the word equation for the reaction between zinc oxide and dilute hydrochloric acid. 					
		 Write the word equation for the reaction between calcium carbonate and dilute sulfuric acid, 					
		7. What is the formulae for the following salts:a) sodium bromide					
		b) potassium nitrate					
		c) magnesium sulfate					
		 Write a balanced symbol equation, including state symbols for the reaction of lithium oxide (in excess) and dilute hydrochloric acid. 					

	Trends and Patterns						
Book	Spec.		CS: RPA8				
Ref.	Ref.		Triple: RPA1				
	CS		Required Practical				
	5.4.2.5	Preparation of a p	oure, dry sample of a soluble salt from an insoluble oxide or				
	Triple	carbonate using a Bunsen burner to heat dilute acid and a water bath or					
	4.4.2.3	(electric neater to evaporate the solution.				
			Method				
	AT	Describe a safe met	had for making pure, dry crystals of copper sulfate				
	2,4,6	2,4,6 Describe a safe method for making pure, ary crystals of copper suitate.					
			ne chemicais and apparatos you will use.				
	WS 2.2						
	VVS Z.S						
	14/52 /		Evelveting Date				
	W\$3.6 W\$3.7	Evaluating Data					
		compared the amount of product they made. Student 1 act closest to the					
		theoretical yield. Student 1 said they were more precise than student 2 but					
		student 2 thought they should have used the word accurate.					
		Who was correct? Explain your answer.					
		2. A student mo	Ide a hypothesis "the greater the mass of sodium carbonate				
		used, the gre	ater the mass of carbon dioxide formed". Using the data				
		below explair	n if and to what extent the student was correct.				
		The student's results are shown in the	table below.				
		Mass of sodium carbonate	Volume of carbon dioxide gas				
		in g	in cm ²				
		0.07	16.0				
		0.12	27.5				
		0.23	52.0				
		0.29	12.5				
		0.34	77.0				
		0.54	95.0				
		0.59	95.0				
		0.65	95.0				

	Trends and Patterns						
Book Ref.	Spec. Ref.	S	frong and wea	k acids (HT only	()		
	CS 5.4.2.5 (HT)	1. Define the term strong acic	l and give an e	example.			
	Triple	2. Define the term weak acid and give an example.					
	(HT)	3. What is the relationship between acid strength and pH?					
		4. As the pH decreases by one unit what does the hydrogen ion concentration of solution increase by?					
		5. Explain the difference between a strong acid and a concentrated acid. Can you have a weak concentrated acid?					
			Prov	/e It!	· · · · · · · · · · · · · · · · · · ·		
		Acids of the same concentra	tion were reac	ted with magn	esium ribbon. The volume of		
		gas produced arrens minores			e snown in me idble.		
		Acid	рН		Volume of gas in cm3		
		А	2		18		
		В	5		6		
		С	1		24		
		D	4		12		
	Use the results to arrange the acids in order of decreasing acid strength Most acidicLeast acidic Complete the sentence: A solution with more hydrogen ions than hydroxide ions is						
		Maths skills					
		Concentration of H+ (aq) ior	ns in mol/dm ³	pH value			
		0.10		1.0			
		0.010		2.0			
	MSIC	0.0010		3.0			
	1013110	0.00010		4.0			
		A solution of sodium chloride in the solution? Give your ans	is neutral, wha wer in mol/dm ³	t will be the cor ³ in decimal for	ncentration of hydrogen ions m and in standard form.		

	T	Trends and Patterns
Book Ref.	Spec. Ref.	Electrolysis
	CS 5.4.3.1 5.4.3.2	 Complete the sentence below. Electrolysis is the splitting apart of a using
	Triple 4.4.3.1 4.4.3.2	2. What do you call the substance being electrolysed?
		3. What type of bonding is present in compounds that can be electrolysed? What must happen to these compounds before they can be electrolysed?
		4. What is the name given to the negative electrode? What is the name given to the positive electrode?
		5. Explain which type of ion moves to the positive electrode and what happens to that ion.
		6. Predict the product formed at the cathode and anode when molten lead bromide (PbBr ₂) is electrolysed. Describe what you would observe at each electrode.
		 Solid ionic substances do not conduct electricity. Explain why they can conduct when molten or in aqueous solution, but not when solid.
		Prove It!
		Sodium chloride is an ionic compound. It contains sodium ions, Na ⁺ , and chloride ions, Cl ⁻ . When molten sodium chloride is electrolysed, sodium metal and chlorine gas are formed. Describe how the sodium ions and chloride ions in solid sodium chloride are converted into sodium and chlorine by electrolysis.
		(6)

	1	Trends and Patterns			
Book Ref.	Spec. Ref.	Electrolysis of Aluminium Oxide			
	CS 5.4.3.3 5.4.3.5	 Why would you use electrolysis to obtain the metal from sodium chloride but not from zinc chloride? 			
	Triple 4.4.3.3	2. Why is aluminium oxide dissolved in molten cryolite before being electrolysed?			
	4.4.3.5 (HT)	3. Why are the carbon anodes regularly replaced in the industrial electrolysis of aluminium oxide?			
		 (HT only) Write half equations for the changes at each electrode in the electrolysis of molten aluminium oxide. Identify each reaction as either reduction or oxidation. 			
		5. Explain why the extraction of aluminium requites so much energy			
		Drava M			
		Prove It! The flow chart shows the main steps in the extraction of aluminium from aluminium ore. Aluminium is recycled by melting scrap aluminium at 700 °C. Use your own knowledge and the information given to answer. Suggest why most aluminium is			
		Aluminium oxide is separated from bauxite ore.			
		Aluminium oxide is putified.			
		Aluminium exide is mixed with cryolite			
		The moture is heated to 950 °C to melt it.			
		Aluminium is astractor by electrolusis			
		Prominican is explacied by electrolysis.			

		Trends and Patterns
Book Ref.	Spec. Ref.	Electrolysis of Aqueous Compounds
	CS 5.4.3.4	1. Name the four ions present in sodium chloride solution .
	5.4.3.5 (HT) Triple 4.4.3.4	2. Which of these positive ions is discharged at the negative electrode during electrolysis? Explain how you know which positive ion is reduced when there is more than one positive ion in a solution.
	4.4.3.5 (HT)	3. Which of these negative ions is discharged at the positive electrode? Explain how you know which negative ion is oxidised when there is more than one negative ion in a solution.
		4. What happens to the 2 remaining ions?
		5. (HT only)Write the half equations, including state symbols, for the reactions at the anode and at the cathode of sodium chloride solution.
		6. Predict the 3 products that would be formed if aqueous lithium bromide solution was electrolysed.
		Prove It!
		Sodium sulfate solution contains sodium ions, Na ⁺ , sulfate ions, SO ₄ ²⁻ , hydrogen ions, H ⁺ , and hydroxide ions, OH ⁻ . Hydrogen is produced at one electrode and oxygen is produced at the other electrode. Explain how these products are formed from the ions in the electrolysis process, indicating how you would identify the products. You may give ionic equations in your answer. (6)

		Trends and Patterns	
Book Ref.	Spec. Ref.	Required practical activity 9 (CS) Required practical 3 (Triple)	
	CS 5.4.3.4	Investigate what happens when aqueous solutions are electrolysed using inert electrodes. This should be an investigation involving developing a hypothesis.	
	Triple 4.4.3.4	1. Suggest a hypothesis for the electrolysis of potassium chloride solution	
	AT 3 AT 7	2. Suggest what the pH around the cathode would be?	
	WS2.1	3. What chemical test could you perform to confirm your hypothesis to Q2?	
		4. Write the half equations, including state symbols, for the changes at the anode and cathode.	
		 Suggest a hypothesis for each experiment below. Magnesium chloride can be electrolysed. The diagram below shows two experiments for electrolysing magnesium chloride. 	
		Experiment 1	

	Trends and Patterns			
Book	Spec.	Chemistry of the atmosphere		
Ref.	Ref.	The composition and evolution of the Earth's atmosphere		
	CS 5.9.1.1 5.9.1.2	 What is the approximate percentage of nitrogen and oxygen in the atmosphere today? 		
	Triple 4.9.1.1 4.9.1.2	 Other than those gases named above, what other gases are present in the atmosphere today? 		
		3. Describe what the early atmosphere was made up of. Which planets' atmosphere today is it like?		
		 Explain how the Earth's early atmosphere was probably formed during its first billion years of existence. 		
		5. Explain how the oceans formed.		
		6. What effect did the formation of the oceans have on the levels of carbon dioxide in the air? Explain your answer.		
		7. Why have theories about the Earth's early atmosphere and how it has changed developed over time?		
		Prove it!		
		Prove it! For the last 200 million years the amount of carbon dioxide in the atmosphere has remained almost the same. Describe the natural processes which remove carbon dioxide from the atmosphere. (6)		

Book Ref.	Spec. Ref.	Carbon dioxide and methane as greenhouse gases	
	CS 5.9.2.1 5.9.2.2	1. Explain what is meant by the term 'greenhouse gas' and name 3 greenhouse gases.	
	Triple 4.9.2.1	2. What is the greenhouse effect?	
	4.9.2.2	3. Explain the greenhouse effect in terms of short and long wavelength radiation and matter.	
		 Describe two human activities that increase the amount of carbon dioxide in the atmosphere. 	
		5. Describe two human activities that increase the amount of methane in the atmosphere.	
	W\$1.6	 A scientist peer reviewed some work on the greenhouse effect. What does 'peer review' mean? Why is it important this is done? 	
		7. What do most scientists believe is the relationship between greenhouse gases and global temperatures? Why do some members of the public not believe this to be true?	
	W\$3.5		
		Prove it! The figure below shows the change in mean global air temperature from 1860 to	
		2000. Explain how human activities have contributed to the main trend shown from 1910 in the figure below (4)	
		14.6	
		14.2 Mean global air temperature 13.8	
		in °C 13.6 13.4	
		1860 1880 1900 1920 1940 1960 1980 2000 Year	

		Trends and Patterns
Book Ref.	Spec. Ref.	Carbon dioxide and methane as greenhouse gases
	CS 5.9.2.3 5.9.2.4	 What is meant by the term 'global climate change'?
	Triple 4.9.2.3 4.9.2.4	2. Describe four potential effects of global climate change
	WS1.4 WS1.6	
		3. Describe why these consequences are difficult to predict.
		4. What is meant by the term 'carbon footprint'?
		5. Describe two actions that can reduce emission of carbon dioxide and methane.
		 Suggest two problems representatives of countries face in reaching international agreements such as the Paris climate agreement.
		7. Suggest and explain the relationship between a nation's wealth and its emissions of carbon dioxide.
		8. What can be the problems of only using the media as your source of knowledge about climate change?

		Trends and Patterns	
Book Ref.	Spec. Ref.	Common atmospheric pollutants and their sources	
	CS 5.9.3.1 5.9.3.2	 What are the products of the complete combustion of a hydrocarbon e.g. methane (CH₄)? 	
	Triple 4.9.3.1 4.9.3.2	2. What are the products of the incomplete combustion of a hydrocarbon?	
		3. Some fossil fuels contain impurities that can produce an acidic gas. Name the element, the gas formed and the pollution problem it contributes to.	
		4. Which other non-metal oxides released from cars also cause this pollution problem? How is this non-metal oxide formed?	
		5. What health problems are caused by the substances named in Q3. and Q4.?	
		6. What other substance may be released that form particulates in the atmosphere? What problems can these cause?	
		7. Why is carbon monoxide dangerous?	
		Prove it! Complete and balance the symbol equation for the complete combustion of methane. CH ₄ + CO ₂ +	
		(2)	

		Trends and Patterns
Book	Spec.	Using Resources
Ref.	Ref.	Using the Earth's resources and obtaining potable water
	CS 5.10.1.1	 Define finite resources and give two examples.
	Triple 4.10.1.1	2. Define renewable resources and give two examples.
		3. Explain what is meant by "sustainability".
		 Give an example of a natural product that is supplemented or replaced by agricultural products.
		 Give an example of a natural product that is supplemented or replaced by synthetic products
	MS2h	Maths skills
		As a rough estimate, there is 1.5 x 10 ¹⁶ metric tonnes of fossil carbon on Earth. In 2014, it was also estimated that 9,2 x10 ⁹ metric tonnes of carbon were burned worldwide that year. Assuming that the 2013 rate of carbon use was to continue calculate an order of magnitude estimate of how long carbon will last.

	Trends and Patterns			
Book Ref.	Spec. Ref.	Using the Earth's resources and obtaining potable water		
	CS 5.10.1.2 5.10.1.3	 Define potable water. Define pure water. 		
	Triple 4.10.1.2 4.10.1.3	3. Describe the method used to produce potable water in the UK, explaining the reason for each step. You could use a flow chart.		
		4. Identify three sterilising agents.		
		5. If supplies of fresh water are limited, what alternate water sources may be used?		
		6. Define desalination and describe the 2 methods of how it is carried out.		
		7. Describe two differences between the treatment of ground water and salty water.		
		8. Why does waste water require treatment at a sewage works before being released into the environment?		
		 Draw a basic flow diagram listing the main steps used in sewage treatment plant to make waste water safe 		
		Prove it!		
		Explain why it is more difficult to produce drinking water from waste water than from water in lakes.		

18	19	21	53
Ar	K	Se	I
1 31		De	
Fir-mois	Fot-satisfier	Someddam.	Contine

Book Ref.	Spec. Ref.	Triple RPA8 CS RPA13 Analysis and purification of water samples from different sources, including pH, dissolved solids and distillation.
	CS 5.10.1.2 5.10.1.3	1. How do you test the pH of water? How would you adjust it if necessary?
	Triple 4.10.1.2 4.10.1.3	2. How do you test if water contains salt (sodium chloride)? How would you remove this if present?
	WS2.2 WS2.5 WS3.7	3. Some countries add chlorine to their water. Why do they do this? How do you test for it?
		4. A student wanted to collect 25cm ³ of water. What piece of equipment should they use? If the piece of equipment was faulty and the student took 10 samples, what sort of error would they have?
		5. A student took 10 samples of water from the same source and tested them. Only 1 result gave an acidic pH but all the others were neutral. What is this type of result called? What should they do about it?
		6. A different student only took 1 sample of water and tested it. Is this a sufficient sample? Why?
		7. A student wanted to heat the water to exactly 30°C. They used a Bunsen burner but there teacher told them there was a better way. What should they have done? Why would it be better?

	Trends and Patterns			
Book Ref.	Spec. Ref.	Using the Earth's resources and obtaining potable water		
	CS 5.10.1.4 (HT)	1. Why is copper important in our technological society?		
	Triple 4.10.1.4 (HT)	 Describe how these two main methods can obtain copper metal from its ore: a) smelting 		
		b) electrolysis		
		3. (HT only) Copper ores are becoming scarce and phytomining and bioleaching are two new methods of extraction. Describe both phytomining and bioleaching.		
		 (HT only) State one advantage of extracting copper using these methods in Q3. over traditional methods. 		
		5. (HT only) Describe one disadvantage of bioleaching.		
		6. (HT only) Once the metal compound is obtained, how can the metal be extracted from the compound?		
		Prove it!		
		(HT only) Soil near copper mines is often contaminated with low percentages of copper compounds. Phytomining is a new way to extract copper compounds from soil. Describe how copper compounds are extracted by phytomining		

	T	1	Trends and Patterns	S	
Book Ref.	Spec. Ref.		Life cycle	assessment	
	CS	1. Why are life cycle	assessments (LCAs) c	arried out?	
	5.10.2.1				
	Triple 4.10.2.1	2. Using a simple flow	wchart outline the stag	ges in an LCA.	
		3. Name the input st to produce alumi	nowing on an LCA rep nium in an alloy to mo	port that would be the raw ake the wings of an aerople	material mined ane.
		4. Name the output a. the green to shops a	shown on a LCS that v nouse gas given off w round the country on	would be: hen a product is distributed lorries	d from a factory
		b. the gas th generated	at causes acid rain giv d in a coal-fired powe	ven off as result of using ele r station when making a pi	ectricity roduct
		5. Explain why parts	of some LCAs may no	t be totally objective.	
		6. Carry out a simplified LCA for a supermarket that is deciding whether to use plastic, poly(ethene) bags or paper bags at its checkouts.			
		Prove it! The table below gives information about milk bottles.			
			Glass milk bottle	Plastic milk bottle]
		Raw materials	Sand, limestone, salt	Crude oil	
		Bottle material	Soda-lime glass	HD poly(ethene)	
		Initial stage in production of bottle material	Limestone and salt used to produce sodium carbonate.	Production of naphtha fraction.	
		Maximum temperature in production process	1600 °C	850 °C	
		Number of times bottle can be used for milk	25	1	
		Size(s) of bottle	0.5 dm ³	0.5 dm ³ , 1 dm ³ , 2 dm ³ , 3 dm ³	
		Percentage (%) of recycled material used i new bottles	n 50 %	10 %	
		Evaluate the production made from HD poly(ethe Use the information given choice of material for mil	and use of bottles made from ne). n and your knowledge and un k bottles.	soda-lime glass and those	

	-	Trends and Patterns
Book Ref	Spec.	Reducing Use of Resources
<u>Kef.</u>	Ref. CS 5.10.2.2 Triple 4.10.2.2	 Suggest 4 reasons why it is important that people recycle materials? Name 2 other methods of conserving limited resources. Name a negative impact of extracting limited resources from the Earth. Glass bottles are made from a limited resource. Describe how we can conserve this limited resource.
		Prove it! When a car reaches the end of its useful life, the car body can be recycled, reused, or sent to landfill. Give three reasons why a steel car body should be recycled and not reused or sent to landfill.

Physical Chemistry Keywords

Add all the important keywords for this big idea in the grid below as you come across them in the study pack.

Word	Definition

	1	1	Physical Chem	nistry	
Book Ref.	Spec. Ref.		Ener Exothermic and	gy changes endothermic reactions	
	CS 5.5.1.1	1. What is meant	by the law of conserv	vation of energy?	
	Triple 4.5.1.1	2. Define an exot	hermic reaction in ter	ms of energy transfer.	
		3. Give 2 example	es of exothermic reac	tions and an everyday use.	
		4. Define an endo	othermic reaction in t	erms of energy transfer.	
		5. Give 2 example	es of endothermic rec	actions and an everyday use	
	W\$3.3		Μ	aths Skills	
	WS3.4 WS3.7		Experiment	Decrease in temperature of water in °C	
			1	5.9	
			2	5.7	
			3	7.2	
			4	5.6	
			5	5.8	
		1. Is the data in t	the table above show	ving an endo or exothermic r	eaction?
		2. Calculate the results. Give yo	mean decrease in te our answer to an app	emperature of water excludir ropriate number of significan	ng an anomalous It figures.
		3. The uncertain results in the to	ty of the thermomete able.	r is +/- 0.05°C. Calculate the	uncertainty of the
		4. One student c results are rep	lid all 5 experiments u eatable, reproducible	using the same equipment. Ex e, both or neither.	plain whether her

	Physical Chemistry				
Book Ref.	Spec. Ref.	Required practical 10 (CS) Required practical 4 (Triple)			
	CS 5.5.1.1	Investigate the variables that affect temperature changes in reacting solutions for e.g. acid + metal, acid + carbonates, neutralisations, displacement of metals.			
	Triple 4.5.1.1	A student conducted an experiment to find out which metal was the most reactive. They did this by selecting a range of metals (copper, zinc, tin and magnesium), adding them to an acid and measuring the temperature rise in 120 seconds.			
	AT 1,3, 5 and	1. Identify the independent variable.			
	6	2. Identify the dependent variable.			
	WS3.7 WS2.2	3. Suggest as many control variables as possible. Why do they need to be controlled?			
		 Draw a results table that the students could put their results in (not forgetting to include units in the headings where appropriate). 			
		 Suggest a common source of error for this experiment and suggest what could be done to reduce this error. 			

		Physical Chemistry
Book Ref.	Spec. Ref.	Chemical cells and fuel cells
	4.5.2.2	1. Define the term 'fuel cell'.
		2. In a hydrogen fuel cell, which gases are pumped into the fuel cell?
		3. What is the waste product of the fuel cell?
		4. Write a word equation for the overall reaction in the fuel cell.
		5. (HT only) Write two half equations that show what happens to both hydrogen and oxygen gases in a hydrogen fuel cell.
		6. Identify 3 advantages of hydrogen fuel cells.
		7. Identify 3 disadvantages of hydrogen fuel cells.
		Prove it!
		Owners of cars powered by fuel cells buy hydrogen from hydrogen filling stations. Figure 2 shows how the number of hydrogen filling stations in the UK is expected to increase up to the year 2030.
		Expedied 1200 10
		Use the information in Figure 2 and your own knowledge to answer this question. Suggest two reasons why the UK government might encourage the building of more hydrogen filling stations. (2)

		Physical Chemistry		
Book	Spec.	The rate and extent of chemical change		
Ref.	Ref.	Calculating Rates of Reaction and Factors Affecting Rate		
	CS 5.6.1.1 5.6.1.2	 What is meaning the of a chemical reaction? What are the two ways to work out the rate of a chemical reaction? Give the units. 		
	Triple 4.6.1.1			
	4.0.1.2	3. (HT only) What does the gradient of the line on a graph plotting [product] against time tell you about the rate of reaction?		
		4. What are the 5 factors that affect rate of reaction (be specific to the state of matter where appropriate).		
	MS2a	Mathe Skille		
	MS20 MS2b	(e) Another student investigated the rate of reaction by measuring the change in mass		
	MS4e	(c) And the state in the state of reaction by including the change in mass.		
		Figure 3 shows the graph plotted from this student's results.		
		Figure 3		
		153.0		
		152.5		
		152.0		
		Mass		
		of flask and its 151.5		
		contents in g		
		151.0		
		150.5		
		150.5		
		150.0 0 50 100 150 200 250 300 350		
		Time in s		
		Give your answer to 3 significant figures (4)		
		f) Determine the rate of reaction at 150 seconds. Show your working on the graph		
		above. Give your answer in standard form (4)		

	T	Physical Chemistry
Book Ref.	Spec. Ref.	Collision Theory and Activation Energy
	CS 5.6.1.3	1. Use the collision theory to explain why only some collisions result in a chemical reaction.
	Triple 4.6.1.3	2. Define the term activation energy.
		 3. How do the following affect the rate of reaction in terms of increasing frequency of collisions: a) Increase in pressure
		b) Increase in surface area
		c) Decrease in concentration
		d) Use of a catalyst
		4. Explain 2 reasons why increasing the temperature increases the rate of reaction.
		5. What is the relationship between the size of pieces of solid material and its surface area to volume ratio?
	MS5c MS1d	Maths skills In an investigation of the reaction between zinc and dilute sulfuric acid, a student compared the rates of reaction by measuring the time taken for a set volume of hydrogen gas (250cm ³) to be given of. The student tested 2 different sized zinc granules and then zinc pellets of equal mass. The granules took 225s to disappear and the pellets took 113s 1. Calculate the mean rate of reaction with the granules and with the pellets. Include units. 2. Estimate how much larger the surface area to volume ratio is for the pellets compared to the granules. 3. Imagine the granules were cubes with sides of 0.1mm. Calculate the surface area, the volume and the surface area to volume ratio for 1 granule of zinc.

		Physical Chemistry
Book Ref.	Spec. Ref.	Required practical 11 (CS) Required practical 5 (Triple)
	CS 5.6.1.2	Investigate how changes in concentration affect the rates of reaction by a method involving the volume of a gas produced and a method involving a change in colour or turbidity.
	Triple 4.6.1.2	1. What does the term 'turbidity' mean? How could you use this to measure a rate of reaction for a give chemical change?
	AT 1,3,5 and 6	2. Suggest another method of measuring the rate of reaction that involves a gas syringe.
	W\$2.2	
		3. A student investigated the rate of reaction of magnesium and hydrochloric acid.
		Mg(s) + 2HCI(aq) MgCl ₂ (aq) + H ₂ (g)
		The student studied the effect of changing the concentration of the hydrochloric acid.
		She measured the time for the magnesium to stop reacting.
		Hydrochloric acid Magnesium ribbon
		Concentration of 0.5 1.0 1.5 2.0 hydrochloric acid in moles per dm ³
		(a) The student changed the concentration of the hydrochloric acid.
		Give two variables that the student should control.
		1
		2
		(2)
		 (ii) Explain why increasing the temperature would increase the rate of reaction. (3)

	T	Physical Chemistry
Book Ref.	Spec. Ref.	Rate of reaction
	CS 5.6.1.4	1. What is a catalyst?
	Triple 4.6.1.4	2. How does a catalyst affect the rate of a chemical reaction? How does it do this?
		3. Why is a catalyst not included in the reactants of a word equation for a reaction?
		4. What are enzymes?
		 Draw a reaction profile for an endothermic reaction showing the activation energy with a catalyst and without a catalyst.
		6. Explain catalytic action in terms of activation energy.
		Prove it! Nitrogen and hydrogen are passed over iron to produce ammonia in the Haber
		Process.
		Balance the equation for the reaction.
		$n_2 + n_2 \rightarrow n_3$ (1)
		What is iron used for in the Haber process?
		Tick one box.
		catalyst
		fuel
		monomer
		reactant (1)

	Physical Chemistry								
Book Ref.	Spec. Ref.	Reversible reactions and dynamic equilibrium							
	CS 5.6.2.1 5.6.2.2	1. Define a reversible reaction.							
	5.6.2.3 Triple 4.6.2.1 4.6.2.2 4.6.2.3	 Write a word equation for hydrated copper sulfate becoming anhydrous copper sulfate and water. Include the reversible reaction symbol. 							
		3. Add the colours of the compounds to the equation above.							
		4. If the forward direction of a reversible reaction is exothermic, what must the backward reaction be?							
		5. A reaction takes in 203kJ of energy in the forward reaction. What will happen w the reaction is reversed?							
		6. Under what conditions will equilibrium be reached?							
		Prove it!							
		Hydrated copper sulphate is a blue solid. When it is heated, white solid anhydrous copper sulphate is made. This is a reversible reaction.							
		hydrated copper sulphate [+ heat energy] anhydrous copper sulphate + water (blue) (white)							
		(a) To make the forward reaction work, the hydrated copper sulphate must be heated all the time.							
		What type of reaction is this?							
		(1)							
		(b) Anhydrous copper sulphate can be used in a test for water. What two things will happen when water is added to anhydrous copper sulphate?							
		1							
		2							
		(2)							

	Physical Chemistry							
Book Ref.	Spec. Ref.	Reversible reactions and dynamic equilibrium (HT only)						
	CS 5.6.2.4 (HT) 5.6.2.5 (HT)	 Describe Le Chatelier's Principle. How will a system respond if the concentration of a reaction is increased? 						
	Triple 4.6.2.4 (HT) 4.6.2.5 (HT)	3. How will a system respond if the concentration of reaction is decreased?						
		 An equilibrium mixture is set up in a closed system with iodine monochloride, chlorine gas, and iodine trichloride. ICI + Cl₂ → ICl₃ 						
		In order to make more iodine trichloride, would you pump more gas into the mixture or remove chlorine gas? Explain your answer using Le Chatelier's Principle.						
	MS3a	Maths Skills What do the following symbols mean: a) = b) < c) << d) >> e) > f) ~ g) ~						

Book Ref.	Spec. Ref. WS3.1 WS3.2		Grap	h Skills		
	WS3.1 WS3.2					
			Mass of lithium carbonate in g	Volume of gas in cm ³		
	MS4a		0.0	0		
	MS4c		0.1	22		
			0.2	44		
			0.3	50		
			0.4	88		
			0.5	96		
			0.6	96		
			0.7	96		
		1	100-			
		1	100			
			80-			
		Volume of gas in cm ³	60			
			40			
			20-			
			0.0 0.1 0.2 0.3	0.4 0.5 0.6 0.7		

		Physical Chemistry							
Book Ref.	Spec. Ref.				Gro	aph Skills			
		The table below shows the student's results.							
						Time in s	Volume of gas in dm ³		
						0	0.000		
						30	0.030		
						60	0.046		
						90	0.052		
						120	0.065		
						150	0.070		
						180	0.076		
						210	0.079		
						240	0.080		
						270	0.080		
			On	Figure 2:					
				Plot the	se results on	the grid.			
				Draw a	line of best fit				
		Figure 2							
		1							
						-			
		Volume							
		of gas in dm ³							
		Time in s							
								(4)	
									(4)

Reflections Page

Each time you come across something you find hard, write it down here and ask your teacher to help you with it.

Topic I Found Hard	Page Number	What was difficult about this?	Tick when you have got help from your teacher