Nets and Surface Area 6 6.1 Common 2-D and 3-D Shapes You have already met many 2-D shapes; here are some with which you should already be familiar: NAME **ILLUSTRATION** NOTES Circle Symmetric about any diameter 3 straight sides Triangle 3 equal sides and Equilateral Triangle 3 equal angles (= 60 °) Isosceles Triangle 2 equal sides and 2 equal angles Right-angled Triangle One angle = 90 $^{\circ}$ Quadrilateral 4 straight sides 4 equal sides and Square 4 right angles Opposite sides equal and Rectangle 4 right angles 4 equal sides; opposite sides Rhombus parallel One pair of opposite Trapezium sides parallel Both pairs of opposite Parallelogram sides equal and parallel Two pairs of adjacent Kite sides equal

NAME	, ,	ILLUSTRATION	NOTES
Penta	gon		5 sides (equal if <i>regular</i>)
Hexag	gon		6 sides (equal if <i>regular</i>)
Octag	on		8 sides (equal if <i>regular</i>)
here are also sev	eral 3-D shape	es with which you	should be familiar:
Cube			All side lengths equal (square faces), and all angles right angles
Cuboi	d		Faces are combination of rectangles (and squares); all angles right angles
Cylind	ler		Circular base
Sphere	2		All points on surface equidistant from centre
Pyram (iid (square-based)		All slant edges are equal in length in a right pyramid
Prism (triangular)	/ / / / / / / / / / / / / / / / / / /	Cross-section remains the same throughout
Tetrah	edron		All four faces are triangular

Note that a *square* is a special case of a rectangle, as it satisfies the definition; similarly, both a square and a rectangle are special cases of a parallelogram, etc.

Example 1

What is the name of the 2-D shape with 4 sides and with opposite angles equal?

Solution

The shape has to be a parallelogram.

(Note: this shape can also be a square, rhombus or rectangle as these are all special cases of a parallelogram.)

Example 2

Draw accurately:

- (a) a rhombus with sides of length 4 cm and one angle 120 $^{\circ}$,
- (b) a kite with sides of length 3 cm and 4 cm, and smallest angle 60 °. Measure the size of each of the other angles.

Solution

(b) Note that the smallest angle, 60 °, must be between the two longest sides. The other angles are approximately 108 °, 108 ° and 84 °.

6.1

Exercises

- 1. What could be the name of the 2-dimensional shape with 4 sides, which has all angles of equal sizes?
- 2. What is the name of a 6-sided, 2-dimensional shape which has sides of equal lengths?
- 3. Draw a parallelogram with sides of lengths 3 cm and 4 cm and with smallest angle equal to 60° .
- 4. Can a 4-sided, 2-dimensional shape have 4 sides of equal lengths, and *not* be a square?
- 5. Can a 4-sided, 2-dimensional shape have 4 angles of equal size, and *not* be a square?
- 6. Name all possible 4-sided, 2-dimensional shapes that have *at least* 2 sides of equal lengths.
- 7. Name all possible 4-sided, 2-dimensional shapes that have *at most* 2 sides of equal lengths.

6.2 2-D Representation of 3-D Shapes

In this section we explore how to draw 3-D shapes, either on squared paper or on *isometric* (triangular spotty) paper. Examples of each for a 2 cm cube, are shown below :

Example 1

On isometric paper, draw a cuboid with sides of lengths 5 cm, 3 cm and 2 cm.

Solution

The diagrams below show three of the possible ways of drawing a $2 \text{ cm} \times 3 \text{ cm} \times 5 \text{ cm}$ cuboid.

98

Example 2

A triangular prism has a cross-section that is a right-angled triangle with base 4 cm and height 5 cm. The length of the prism is 8 cm. Draw the prism.

Solution

First draw the cross-section of the prism. Then draw two lines of length 8 cm, parallel to each other. Complete the triangle at the other end of the prism.

Note: Lines parallel on the object are parallel on the diagram.

- 2. On isometric paper, draw a cuboid with sides of lengths 3 cm, 2 cm and 4 cm.
- 3. Three cubes with sides of length 2 cm are put side-by-side to form a cuboid. Draw this cuboid on isometric paper.
- A cuboid has sides of lengths 3 cm, 6 cm and 2 cm. Draw three possible 4. views of the cuboid on isometric paper.
- 5. The cuboid shown in the diagram opposite may be cut in half to form two triangular prisms. Draw one of these prisms on isometric paper. Note: *The cut may be* made in three different ways.

- 6. A triangular prism has a cross-section that is a right-angled triangle with base 4 cm and height 3 cm. The length of the prism is 6 cm. Draw the prism on isometric paper.
- 7. On plain or squared paper, draw a cube with sides of 5 cm.
- 8. On plain or squared paper, draw a cuboid with sides of lengths 6 cm, 4 cm and 3 cm.
- 9. A prism has a triangular cross-section with sides of length 6 cm. The length of the prism is 8 cm. Draw the prism on plain paper.

6.3 Plans and Elevations

Ľ,

Example 1

Draw the *plan* and *elevations* of this cuboid:

6.3

- Left Side Elevation
- Note: The dotted line on the left side elevation shows the position of the rear roof line which would not be visible from this viewing point.

Exercises

2.

3.

(Diagrams to be drawn full size unless scale given.)

Draw the plan and elevations of the 1. cuboid shown:

triangular prism shown:

- 4. (a) Draw the plan and elevations of the building shown using a scale of 1 cm for 1 m:
 - (b) How do these views compare with those in Example 2 and in question 3 ?
- 5. A square-based right pyramid has a base with sides of length 4 cm. The sides of the pyramid are isosceles triangles, and the vertical height of the pyramid is 5 cm. Draw the plan, and an elevation of the pyramid.

6. The diagram shows a tissue box. The opening in the centre of the top of the box is 8 cm by 4 cm.

Draw a plan and elevations of the box.

7. A hole of radius 1 cm is drilled through the middle of a block of wood as shown in the diagram:

Draw the plan and elevations of the block of wood.

6.3

9. The sketch shows the design of a house with an overhanging roof.

Draw the plan and elevations of the house.

10. The diagram shows a factory with a flat roof and a square-based chimney: Draw the plan and elevations

6.4 Nets and Surface Area of Cubes and Cuboids

A *net* can be folded up to make a solid. The diagram below shows one of the possible nets of a cube:

Draw a net for the cube shown and calculate its surface area.

Solution

Example 2

Draw a net for the cuboid shown and calculate its surface area.

Solution

One of the possible nets for the cuboid is shown opposite, together with the area of each rectangle:

Surface area = 2 + 6 + 3 + 6 + 3 + 2

$$= 22 \text{ cm}^2$$

You can check your solution:

x = 2 cm, y = 3 cm and z = 1 cm so, using the formula 2(xy + yz + xz),

surface area = $2(2 \times 3 + 3 \times 1 + 2 \times 1)$

 $= 2 \times 11$

= 22 cm^2 (as before)

Example 3

Calculate the surface area of this cuboid:

Solution

e area =
$$2(5 \times 1 + 1 \times 8 + 5 \times 8)$$

= $2(5 + 8 + 40)$
= 2×53
= 106 cm^2

Side lengths in cm

Exercises

- 1. Draw different arrangements of 6 squares and indicate which of them could be folded to form a cube.
- 2. Draw a net for a cube with sides of length 4 cm, and calculate its surface area.
- 3. Draw a net for the cuboid shown, and calculate its surface area.

- 4. (a) On card, draw a net for a cube with sides of length 5 cm.
 - (b) Add tabs to the net so that it can be cut out and glued together.
 - (c) Cut out the net, fold it up and glue it together to make a cube.

(a) 10 cm (b) 9 cm.

8. Calculate the surface area of each of the following cuboids:

9. A diagram of a net is shown below, where two of the rectangles have been drawn inaccurately.

- (a) Explain what is wrong with the net.
- (b) Draw a modified net that would produce a cuboid, by changing two of the rectangles.
- (c) Give an alternative answer to part (b).
- 10. The surface area of a cube is 24 cm^2 . Calculate the length of the sides of the cube.

6.4

х

6.5 Nets of Prisms and Pyramids

In order to draw the nets of some prisms and pyramids, you will need to construct triangles as well as squares and rectangles.

Example 1

- (a) Draw a net for this triangular prism:
- (b) Calculate its surface area.

Solution

(a) A net is shown below where all lengths marked are in cm.

Surface area = $\begin{pmatrix} A & B & C & D & E \\ (5 \times 4) + (4 \times 4) + (4 \times 3) + (\frac{1}{2} \times 4 \times 3) + (\frac{1}{2} \times 4 \times 3) \\ = 20 + 16 + 12 + 6 + 6$

 $= 60 \text{ cm}^2$

6.5

U,

Example 2

The square base of a pyramid has sides of length 4 cm. The triangular faces of the pyramid are all isosceles triangles with two sides of length 5 cm. Draw a net for the pyramid.

3. A pyramid has a square base with sides of length 6 cm. The other edges of the prism have length 6 cm. Draw a net for the pyramid.

4. A pyramid has a rectangular base with sides of lengths 3 cm and 4 cm. The other edges of the pyramid have length 6 cm.Draw a net for this pyramid on card, cut it out and construct the pyramid.

- 5. A tetrahedron has four faces which are all equilateral triangles. Draw a net for a tetrahedron, which has edges of length 4 cm.
- 6. A square-based prism has a base with sides of length 5 cm and vertical height 6 cm. Draw the net of this prism.

(a) Draw a net for the prism.

7.

- (b) Find the height of the prism.
- 8. A container is in the shape of a pyramid on top of a cuboid, as shown in the diagram opposite.

Draw a net for the container.

9. The diagram below shows a square-based pyramid; the base is horizontal and AE is vertical. Draw a net for this pyramid.

