

Centre Number				Candidate Number	
Surname	_				
Forename(s)	_				
Signature	_				

Level 2 Certificate FURTHER MATHEMATICS

Paper 1 Non-Calculator

Nednesday 8 June 2022 A	Afternoon	Time allowed: 1	hour 45 minutes
-------------------------	-----------	-----------------	-----------------

Student Self Reflection Topics I need to revise Topics I need to learn

Silly Mistakes?

Target mark for next time

For tead	her use
Pages	Mark
2-3	
4-5	
6-7	
8-9	
10-11	
12-13	
14-15	
16-17	
18	
TOTAL	

Do not write
outside the
hov

Answer **all** questions in the spaces provided.

1 Work out the distance between the points *A* (-5, 3) and *B* (3, -2) Circle your answer.

[1 mark]

 $\sqrt{5}$

 $\sqrt{29}$

 $\sqrt{65}$

 $\sqrt{89}$

Rearrange $9p = \frac{m^3 + 3}{p^4}$ to make m the subject.

[3 marks]

Answer

Do not write outside the box

The answer is $(t + 19)$	[3 mai
Work out the value of <i>t</i> .	
Answer	
Expand and simplify $(3x-4)(x-2)(2x+3)$	[3 mai
Answer	

Turn over ►

Do not	write
outside	e the
ho	Y

Work out the values of a and b .			[4 m
			Į
<i>a</i> =	h	=	
u			

			Do not write
6	The <i>n</i> th term of a sequence is $\frac{3n+1}{4n-2}$		outside the box
6 (a)	A term in the sequence has the value $\frac{4}{5}$		
	Work out the value of n .	[2 marks]	
	Answer		
6 (b)	Write down the limiting value of the sequence as n $\rightarrow \infty$	[1 mark]	
	Answer		

Turn over ▶

Do not write
outside the
box

•	Rationalise and simplify $\frac{5 + \sqrt{5}}{3 - \sqrt{5}}$				
	Give you answer in the form $a + b\sqrt{5}$ where a and b are integers.	[4 marks]			
	Answer				
	The coefficient of x^3 in the expansion of $(2a + x)^5$ is 360.				
3	The coefficient of x^3 in the expansion of $(2a + x)^5$ is 360.				
•	The coefficient of x^3 in the expansion of $(2a + x)^5$ is 360. Work out the two possible values of a .	[3 marks]			
ı		[3 marks]			
•		[3 marks]			
		[3 marks]			

1)	$f(x) = \sqrt[3]{2x}$	
	Work out f ⁻¹ (-4)	[2 marks]
	Answer	
o)	$g(x) = 2x^2 + 3x - 19$ $h(x) = x^2 - 9$	
	Solve $g(x) < h(x)$	[4 marks]
	Answer	

13

Video Solutions © 17

Here is a sketch of $y = \cos x$ for $0^{\circ} \le x \le 360^{\circ}$ and the line y = k

The line y = k intersects the graph of $y = \cos x$ at points (30, k) and (330, k)

10 (a) Write down the exact value of k.

[1 mark]

10 (b) Solve $\cos x = -k$ for $0^{\circ} \le x \le 360^{\circ}$

[2 marks]

Answer ____

11 A function f is given by

$$f(x) = x(x - 4)$$
 $0 \le x < 5$
= 10 - x $5 \le x < 8$
= 2 $8 \le x \le 10$

Draw a sketch of y = f(x) for values of x from 0 to 10.

[4 marks]

Turn over ▶

12	The first four terms of a quadratic sequence are					
		0	p	16	33	
12 (a)	Work out the	e value o	f <i>p</i>			[3 marks]
4.5 (1.)						
12 (b)	Work out an	express	ion for the	nth term.		[3 marks]
		P	Answer			

Do not write outside the box

13 (a)
$$\mathbf{M} = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$$

Describe geometrically the single transformation represented by M. [2 marks]

Answer

- **13 (b)** Here are three transformations in the x y plane.
 - A: Rotation through 90° clockwise about the origin.
 - B: Reflection in the line y = x
 - C: Transformation A followed by transformation B.

Use matrix multiplication to show that C is equivalent to a single reflection.

[4 marks]

<u>12</u>

Video Solutions © 175

14	$y = 8ax^3 + \frac{6}{x}$	
	y has a minimum value when $x = 0.5$	
	Work out the value of <i>a</i> .	[4 marks]

a = _____

15 Quadrilateral *ABCD* is made from two triangles.

$$AB = 10 \text{ cm}$$
 $BC = 12 \text{ cm}$ $\sin x = \frac{2}{3}$

Not drawn accurately

Work out the length of DC.	[4 marks]		

8

Turn over ▶

Answer

A, B, C and D are points on a circle. Line EDF is tangent to the circle. AB and DC are parallel.

Angle
$$CDF = x$$
 Angle $ADE = 2x$ Angle $ACB = w$

Prove that $w = 180^{\circ} - 5x$	[5 marks]

Snow that	$\sqrt{39} + 30$	can be writte	n in the form $a\sqrt{7}$	where a	is an intege
					[4

Do not write outside the box

9

Turn over ►

18	A circle, centre C (10, 5) touches the x -axis at the point P (10, 0).
	The tangent to the circle at point Q (13, m) intersects the x -axis at point R .
	OP: PR = 2: k
	Find the value of k. [5 marks]
	<i>k</i> =

19	Show that $8 - 3\sin x \cos x \tan x$ can be written in the form		Do not wro
	$a\cos^2 x + b$ where a and b are integers.	[4 marks]	

Turn over ▶

20	Solve th	e simultaneous	equations
----	----------	----------------	-----------

$$3y^2 - xy - 4x^2 - 13 = 0$$
$$y = 2x + 1$$

Do **not** use trial and improvement.

You must show your working.	[5 marks]
Angwor	

END OF QUESTIONS

5

